Exercise 6

Find the series solution for the following inhomogeneous second order ODEs:

$$
u^{\prime \prime}-x u^{\prime}+x u=e^{x}
$$

Solution

Because $x=0$ is an ordinary point, the series solution of this differential equation will be of the form,

$$
u(x)=\sum_{n=0}^{\infty} a_{n} x^{n} .
$$

To determine the coefficients, a_{n}, we will have to plug the form into the ODE. Before we can do so, though, we must write expressions for u^{\prime} and $u^{\prime \prime}$.

$$
u(x)=\sum_{n=0}^{\infty} a_{n} x^{n} \quad \rightarrow \quad u^{\prime}(x)=\sum_{n=0}^{\infty} n a_{n} x^{n-1} \quad \rightarrow \quad u^{\prime \prime}(x)=\sum_{n=0}^{\infty} n(n-1) a_{n} x^{n-2}
$$

Also, the Taylor series of e^{x} about $x=0$ is

$$
e^{x}=\sum_{n=0}^{\infty} \frac{1}{n!} x^{n}
$$

Now we substitute these series into the ODE.

$$
\begin{gathered}
u^{\prime \prime}-x u^{\prime}+x u=e^{x} \\
\sum_{n=0}^{\infty} n(n-1) a_{n} x^{n-2}-x \sum_{n=0}^{\infty} n a_{n} x^{n-1}+x \sum_{n=0}^{\infty} a_{n} x^{n}=\sum_{n=0}^{\infty} \frac{1}{n!} x^{n} \\
\sum_{n=0}^{\infty} n(n-1) a_{n} x^{n-2}-\sum_{n=0}^{\infty} n a_{n} x^{n}+\sum_{n=0}^{\infty} a_{n} x^{n+1}=\sum_{n=0}^{\infty} \frac{1}{n!} x^{n}
\end{gathered}
$$

The first series on the left is zero for $n=0$ and $n=1$, so we can start the sum from $n=2$. In addition, the second series is zero for $n=0$, so we can start the sum from $n=1$.

$$
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}-\sum_{n=1}^{\infty} n a_{n} x^{n}+\sum_{n=0}^{\infty} a_{n} x^{n+1}=\sum_{n=0}^{\infty} \frac{1}{n!} x^{n}
$$

Since we want to combine the series, we want the first two series to start from $n=0$. We can start the first at $n=0$ as long as we replace n with $n+2$, and we can start the second at $n=0$ as long as we replace n with $n+1$.

$$
\sum_{n=0}^{\infty}(n+2)(n+1) a_{n+2} x^{n}-\sum_{n=0}^{\infty}(n+1) a_{n+1} x^{n+1}+\sum_{n=0}^{\infty} a_{n} x^{n+1}=\sum_{n=0}^{\infty} \frac{1}{n!} x^{n}
$$

To get x^{n+1} in the first series on the left, write out the first term and change n to $n+1$. Do the same with the series on the right side of the equation.

$$
2 a_{2}+\sum_{n=0}^{\infty}(n+3)(n+2) a_{n+3} x^{n+1}-\sum_{n=0}^{\infty}(n+1) a_{n+1} x^{n+1}+\sum_{n=0}^{\infty} a_{n} x^{n+1}=1+\sum_{n=0}^{\infty} \frac{1}{(n+1)!} x^{n+1}
$$

Now that we have x^{n+1} in every series, we can combine the series.

$$
2 a_{2}+\sum_{n=0}^{\infty}\left[(n+3)(n+2) a_{n+3} x^{n+1}-(n+1) a_{n+1} x^{n+1}+a_{n} x^{n+1}\right]=1+\sum_{n=0}^{\infty} \frac{1}{(n+1)!} x^{n+1}
$$

Factor the left side.

$$
2 a_{2}+\sum_{n=0}^{\infty}\left[(n+3)(n+2) a_{n+3}-(n+1) a_{n+1}+a_{n}\right] x^{n+1}=1+\sum_{n=0}^{\infty} \frac{1}{(n+1)!} x^{n+1}
$$

Now we match coefficients on both sides.

$$
\begin{aligned}
& 2 a_{2}=1 \\
& (n+3)(n+2) a_{n+3}-(n+1) a_{n+1}+a_{n}=\frac{1}{(n+1)!}
\end{aligned}
$$

Now that we know the recurrence relations, we can determine a_{n}.

$$
\begin{array}{rrll}
& 2 a_{2}=1 & \rightarrow & a_{2}=\frac{1}{2} \\
n=0: & 6 a_{3}-a_{1}+a_{0}=1 & \rightarrow & a_{3}=\frac{1}{6}\left(1-a_{0}+a_{1}\right) \\
n=1: & 12 a_{4}-2 a_{2}+a_{1}=\frac{1}{2} & \rightarrow & a_{4}=\frac{1}{24}\left(3-2 a_{1}\right) \\
n=2: & 20 a_{5}-3 a_{3}+a_{2}=\frac{1}{6} & \rightarrow & a_{5}=\frac{1}{120}\left(1-3 a_{0}+3 a_{1}\right) \\
n=3: & 30 a_{6}-4 a_{4}+a_{3}=\frac{1}{24} & \rightarrow & a_{6}=\frac{1}{720}\left(9+4 a_{0}-12 a_{1}\right) \\
n=4: & 42 a_{7}-5 a_{5}+a_{4}=\frac{1}{120} & \rightarrow & a_{7}=\frac{1}{5040}\left(-9-15 a_{0}+25 a_{1}\right) \\
n=5: & 56 a_{8}-6 a_{6}+a_{5}=\frac{1}{720} & \rightarrow & a_{8}=\frac{1}{40320}\left(49+42 a_{0}-90 a_{1}\right)
\end{array}
$$

Therefore,

$$
\begin{aligned}
& u(x)=a_{0}\left(1-\frac{1}{6} x^{3}-\frac{1}{40} x^{5}+\frac{1}{180} x^{6}-\frac{1}{336} x^{7}+\frac{1}{960} x^{8}+\cdots\right) \\
&+ a_{1}\left(x+\frac{1}{6} x^{3}-\right. \\
&\left.\frac{1}{12} x^{4}+\frac{1}{40} x^{5}-\frac{1}{60} x^{6}+\frac{5}{1008} x^{7}-\frac{1}{448} x^{8}+\cdots\right) \\
&+\frac{1}{2} x^{2}+\frac{1}{6} x^{3}+\frac{1}{8} x^{4}+\frac{1}{120} x^{5}+\frac{1}{80} x^{6}-\frac{1}{560} x^{7}+\frac{7}{5760} x^{8}+\cdots,
\end{aligned}
$$

where a_{0} and a_{1} are arbitrary constants.

